Plant traits response to grazing exclusion by fencing assessed via multiple classification approach: a case from a subalpine meadow

Wen Jin Li1,*, Shuang Shuang Liu1, Jin Hua Li1, Ru Lan Zhang1, Ka Zhuo Cai Rang2, Hua Kun Zhou1, Bu Qing Yao3 and Jun Feng Wang4

1State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China, *e-mails: wenjinli@163.com or liwj@lzu.edu.cn (corresponding author)
2Grassland Professional Team of Henan Mongolis Autonomous County, Henan 811500, Qinghai, China
3Key laboratory of restoration ecology of cold area in Qinghai province, Northwest institute of plateau biology, Chinese academy of sciences, Xining, 810008, Qinghai, China.
4Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Sciences, Northeast Normal University, Changchun, 130024, Jilin, China

INTRODUCTION

Overgrazing has often been identified as one of the main factors of biodiversity loss, productivity, soil carbon and nitrogen decrease in grasslands worldwide (Snyman and du Preez 2005, Akiyama and Kawamura 2007, Xiong et al. 2016). Overgrazing has clear negative consequences for ecosystem functioning, however grazing has often played key roles in ecosystem functional process in grasslands worldwide, because grazing affects plant growth, community structure, and ecosystem productivity (Oliff and Ritchie 1998, Zhu et al. 2012a), stability of grasslands ecosystems (Borer et al. 2014), and nutrient cycling (Liu et al. 2018). Therefore, understanding the effects of grazing in