SUMMER NEST SITES OF THE COMMON DORMOUSE
MUSCARDINUS AVELLANARIUS L. IN YOUNG WOODLANDS OF LITHUANIA

ABSTRACT: Selection of nest sites by the common dormouse Muscardinus avellanarius L. depends on habitat type and suitable plants that can support and hide dormouse nests properly. Lithuania is situated in the northern part of the distribution range of M. avellanarius. Some peculiarities of nest site selection in these dormice could be expected here compared to the regions situated further south because of differences in composition of the woody vegetation. Searches for nests of M. avellanarius were carried out in different young woodlands of Lithuania at 16 study sites, and detailed study of nest site selection in this species was carried out in an overgrown clearing in 2005–2006. In comparison to other parts of its distribution range, significant prevalence of Norway spruce as a nest supporting plant was observed in Lithuania. More than 70% of nests of M. avellanarius (n = 120) found in different young woodlands were situated in young spruce trees. In habitats where suitable spruce trees were absent or scarce, young deciduous trees (e.g. oak, ash, aspen, lime, hornbeam) and shrubs (e.g. hazel, bramble, raspberry, willow, honeysuckle) were selected for nesting sites. In overgrown mid-forest clearing, young spruce trees were evidently preferred by M. avellanarius as nest supporting plants despite their comparatively scarcity. Planted oak trees were selected by M. avellanarius for nesting in the plot of the clearing where young spruce trees were almost absent. The average height of dormouse nests was 1.0 ± 0.6 m above ground in young woodlands, and it was related to the age and height of young trees and shrubs.

KEY WORDS: Muscardinus avellanarius, nest sites, overgrown clearings, Norway spruce, Lithuania

1. INTRODUCTION

Common dormice Muscardinus avellana L. build their woven ball-shaped nests both in closed cavities like tree holes and nestboxes, as well as in thick tangles of woody vegetation. Several radio tracking and nestbox studies showed that M. avellanarius preferred closed nest sites (tree holes for example) as more secure if they were present (e.g. Bright and Morris 1991, 1992, Juskaitis 2005). However in some cases, M. avellanarius preferred to nest in shrubs although nestboxes were available (Berg and Berg 1998, Eden and Eden 2001). In young woodlands, natural closed nest sites are absent, and M. avellanarius build their woven nests in shrubs and young trees.

Several studies of summer nest sites of M. avellanarius have been carried out in the Alps (Kahmann and Frisch 1950, Wachtendorf 1951), Great Britain (Hurrell
and McIntosh 1984), France (van Laar 1979), Sweden (Berg 1996, Berg and Berg 1998) and Netherlands (Foppen et al. 2002). Data on nest sites of *M. avellanarius* in woodlands with high canopy trees were collected using radio-tracking (Bright and Morris 1991, 1992, Müller-Stiess 1996). In several publications, scattered data on nest sites from different geographic regions are presented (e.g. Ognev 1948, Lozan 1970, Möckel 1988, Vilhelmsen 1996, Gatter and Schütt 1999, Eden and Eden 2001). A few communications report finding nests of *M. avellanarius* in bird nests (Berthold and Querner 1986, Fuchs 1987) and other unusual places (Görner 1990, Fischer and Bosecker 1992).

Lithuania is situated in the northern part of the distribution range of *M. avellanarius*, which extends from the Mediterranean (about latitude 36°N) to southern Sweden (about latitude 60°N) (Mitchell-Jones et al. 1999). Habitats of *M. avellanarius* in Lithuania differ considerably from optimal habitats described for this species in Britain (e.g. Bright and Morris 1996). About 40% of Lithuanian dormouse localities are situated in coniferous-dominated habitats (Juškaitis 2007). The position of Lithuania within the distribution range of Norway spruce *Picea abies* (L.), which is widespread in Northern Europe and in the mountain regions of Central and Southern Europe (Navasaitis et al. 2003), determines some peculiarities of *M. avellanarius* habitats in this country. On the other hand, some plants favoured by *M. avellanarius* as nest sites (e.g. beech *Fagus sylvatica* L., honeysuckle *Lonicera periclymenum* L., brambles *Rubus* spp.) are absent or scarce in Lithuania. For all these reasons, some peculiarities of nest site selection in *M. avellanarius* could be expected in Lithuania compared to the regions situated to the south of this country.

The aims of the present study are: 1) to analyse summer nest site selection by *M. avellanarius* in young woodlands of Lithuania; 2) to compare *M. avellanarius* summer nest site selection in Lithuania with that in other parts of the dormouse’s distribution range.

2. STUDY AREA

Data on summer nest sites of *M. avellanarius* in young woodlands of Lithuania were collected at 16 study sites scattered over all the country (Fig. 1). This was done during author’s investigations of *M. avellanarius* populations at two dormouse study sites in Šakiai and Molėtai districts (e.g. Juškaitis 2003a, 2005), *M. avellanarius* studies in the Aukštadvaris regional park (Juškaitis 2004), biodiversity studies in various administrative districts of Lithu-
Nest sites of the common dormouse in young woodlands

Youth woodlands included areas with early successional stages of forest stand formation up to an age of about 10 years, where the height of young trees and shrubs usually did not exceed 3 m. In most cases, these were overgrown clearings, in which foresters usually planted young Norway spruce or Scots pine Pinus sylvestris L. trees which later formed young coniferous tree plantations or mixed forest stands.

Detailed study of nest site selection in M. avellanarius was carried out in an overgrown clearing at study site A in Šakiai district (south-western Lithuania; 55°03´N, 23°04´E). In winter 2001/2002, this area of about 5 ha (90 m × 560 m) was clear-felled (Fig. 1). The clearing was bordered by a stand to the east which was dominated by young birch trees (Betula spp.), and was surrounded on the other sides by mixed stands of Norway spruce, birch and black alder Alnus glutinosa (L.).

In 2006, when the study was carried out, young trees and shrubs covered about 2/3 of the cleared area, and the rest was covered with grassy vegetation. Young birches Betula pendula Roth and B. pubescens Ehrh., aspen Populus tremula L. and glossy buckthorn Frangula alnus Mill. were prevalent among the woody vegetation. Other abundant woody plant species were raspberry Rubus idaeus L., black alder, hazel Corylus avellana L., and Norway spruce. Foresters had planted young oak Quercus robur L. trees, which were previously almost absent in this clearing. In both plot I and plot II, total woody vegetation cover was 63%, but the composition of dominant woody vegetation was different (see Figs. 4A, B).

3. MATERIAL AND METHODS

The total area of the clearing was divided into 10 × 10 m squares (n = 504) in April 2006. Searches for nests of M. avellanarius were carried out in April 2006, for nests from the previous year – 2005, and in November 2006, for nests from the current year – 2006. Locations of all nests of M. avellanarius found were mapped with an accuracy of 1 meter. Grass nests of M. avellanarius (classification by Wachtendorf 1951) were distinguished from nests of the harvest mouse Micromys minutus Pall. by the longitudinal finely shredded leaves of grasses in nests of M. minutus (Ulevičius and Juškaitis 2005). In June 2006, cover of woody plants was mapped in two 90 × 100 m plots (Fig. 1), which differed in composition of woody vegetation and numbers of nests found.

Habitat type, nest supporting plant, position of the nest, height above ground, nest material, and nest type (according to Wachtendorf 1951) were recorded for each summer nest. Nest height above ground was measured to the bottom of the nest with an accuracy of 1 cm in the overgrown clearing at site A, but with an accuracy of 10 cm in other study sites. In total, 140 nests of M. avellanarius were recorded in the clearing at site A in the fourth and fifth years after clear-felling and 120 nests in other young woodlands elsewhere in Lithuania. Data on nest sites in the clearing at site A and elsewhere in Lithuania were analysed separately.

Fisher’s z-test for the analysis of the difference between two proportions (Uitenbroek 1997) was used to evaluate differences in the observed proportion of M. avellanarius nests in different nest supporting plants and the proportion of these plants in the total woody vegetation cover in two different plots of the overgrown clearing. Other statistical analyses (χ²-test and t-test) were performed using STATISTICA 6.0 software (StatSoft 2001). All means are presented with standard deviations (mean ± SD).

4. RESULTS

More than 70% of nests of M. avellanarius (n = 120) found in different young woodlands of Lithuania (excluding data from the overgrown clearing at site A) were situated in young spruce trees (Fig. 2). The average height of spruce trees supporting dormouse nests was 2.2 ± 1.3 m (n = 64). Small and thick young spruce trees created very good conditions to hide and to support dormouse nests. As spruce trees grew up, the distances between horizontal branches increased, and the branches could not support dormouse nests properly. Nests of M. avellanarius in
spruce trees were situated at heights from 0.2 m to 3 m above ground, on average – 1.1 ± 0.6 m (n = 68). Nests were always situated among the thickest horizontal branches, and 85% of nests (72 out of 85) were attached to the spruce tree trunk. The remaining nests were situated at a distance of 5–30 cm from the trunk (50 cm and 100 cm in two exceptional cases).

Other plants supporting nests of *M. aestivalarius* were hazel, bramble *Rubus caesius* L., willow *Salix* spp., honeysuckle *Lonicera xylosteum* L., raspberry and young deciduous trees (ash *Fraxinus excelsior* L., oak, birches, aspen, lime *Tilia cordata* Mill. and hornbeam *Carpinus betulus* L.). One dormouse nest was found among grassy vegetation supported by *Lathyrus pratensis* L. Young deciduous trees usually became suitable for dormouse nests after they had lost their tops and sprouted several new shoots. Tree tops could be cut by humans or bitten off by ungulate mammals or beavers *Castor fiber* L. Old bird nests formed the base for dormouse nests in six cases (three of them were thrush *Turdus* spp. nests).

In the overgrown clearing at site A, young spruce and oak trees were the most preferred by *M. aestivalarius* as nest supporting plants (Fig. 3). Numbers of nests of *M. aestivalarius* in oak trees increased significantly in 2006 compared to 2005 ($\chi^2 = 12.00, P = 0.005, df = 1$), and decreased in ash trees ($\chi^2 = 3.80, P = 0.051, df = 1$). Other changes were insignificant (e.g. in spruce trees, $\chi^2 = 1.79, P = 0.180, df = 1$). During one vegetation season, young oak trees increased in size and became more suitable and preferred nest sites for *M. aestivalarius*.

M. aestivalarius showed different preferences for nest supporting plants in two plots of the overgrown clearing which differed in composition of their woody vegetation (Fig. 4A, B). In plot I, the preferred nest supporting plant species evidently was oak ($z = -7.241, P = 0.000$), although its cover was negligible (Fig. 4A). Another preferred species was ash ($z = -2.089, P = 0.037$). Four woody plant spe-
cies/genera were avoided significantly by *M. avellanarius* as nest sites: birches (*z = 6.465, *P* = 0.000), raspberry (*z = 3.074, *P* = 0.002), glossy buckthorn (*z = 2.236, 0.025) and *Salix* spp. (*z = 2.145, *P* = 0.032).

The situation was different in plot II, where Norway spruce was evidently preferred by *M. avellanarius* as the nest supporting plant species (*z = –7.815, *P* = 0.000) in spite of its comparatively low cover (Fig. 4B). The second preferred species was ash (*z = –2.002, *P* = 0.045), although its cover was only 0.1%. Four woody plant species/genera were avoided significantly by *M. avellanarius* as nest sites in plot II: glossy buckthorn (*z = 6.588, *P* = 0.000), birches

![Fig. 4](image_url)

Fig. 4. Proportion of nests of *M. avellanarius* in different woody plant species (black bars) in relation to their proportion of the total woody vegetation cover (white bars) in overgrown clearing at site A (pooled data from 2005 and 2006): A) in plot I (*n* = 23 nests); B) in plot II (*n* = 47 nests) (see scheme in Fig. 1).

![Fig. 5](image_url)

Fig. 5. Distribution of *M. avellanarius* nests found (*n* = 98) according to height intervals above ground in young woodlands of Lithuania. Data from overgrown clearing at site A are not included.
Rimvydas Juškaitis, Rimantas Remeisis

(z = 3.912, P = 0.0001), black alder (z = 2.449, P = 0.014) and aspen (z = 2.387, P = 0.017). The number of nests of *M. avellanarius* was significantly higher in plot II compared to plot I \((\chi^2 = 4.24, \text{df} = 1, \ p = 0.040; \text{pooled data from 2005 and 2006}) \). It is noteworthy that oak cover was almost the same in plot I and plot II (1.4% and 1.6%, respectively), but young spruce trees were almost absent in plot I.

The average height of nests of *M. avellanarius* above ground was 1.0 ± 0.6 m (n = 98) in different young woodlands in Lithuania (excluding data from the overgrown clearing at site A). 43% of dormouse nests found (n = 98) were situated in the height range 0.6 to 1.0 m above ground (Fig. 5). In the overgrown clearing at site A, average height of nests of *M. avellanarius* above ground was 62 ± 27 cm (n = 78) in 2005 (the fourth year after clear-felling). Next year, it increased significantly \((t = 6.15, \text{df} = 135, \ P < 0.0001) \) and averaged 96 ± 38 cm (n = 59). The average height of nest supporting plants was 140 ± 60 cm (n = 72) and 180 ± 60 cm (n = 59) in the respective years \((t = 3.79, \text{df} = 129, \ P < 0.001) \).

5. DISCUSSION AND CONCLUSIONS

Nest sites of *M. avellanarius* were slightly different in the overgrown clearing at site A compared to other young woodlands of Lithuania. In this overgrown clearing, planted young oak trees were abundant, and they were preferred by *M. avellanarius* as nest supporting plants in the plot where spruce trees were almost absent. However, in the plot where both spruce and oak trees grew, *M. avellanarius* evidently preferred spruce trees. This last evidence confirms the conclusion that Norway spruce trees are preferred nest sites for *M. avellanarius* in young woodlands of Lithuania, and *M. avellanarius* uses other nest supporting plants mainly when suitable spruce trees are absent.

Several plant species – bramble *Rubus fruticosus* L., Norway spruce, beech and juniper *Juniperus communis* L. – were the main plants supporting nests of *M. avellanarius* in

<table>
<thead>
<tr>
<th>Region (number of nests)</th>
<th>Plant species</th>
<th>% of nests found</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Alps (1046)</td>
<td>Spruce Picea sp.</td>
<td>50</td>
<td>Kahmann and Frisch 1950</td>
</tr>
<tr>
<td></td>
<td>Beech Fagus sp.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Foothills of the Alps (316)</td>
<td>Beech Fagus sylvatica</td>
<td>42</td>
<td>Wachtendorf 1951</td>
</tr>
<tr>
<td></td>
<td>Spruce Picea excelsa</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bramble Rubus fruticosus</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Great Britain (347)</td>
<td>Bramble Rubus sp.</td>
<td>42</td>
<td>Hurrell and McIntosh 1984</td>
</tr>
<tr>
<td>South-central Sweden (203)</td>
<td>Juniperus communis</td>
<td>54</td>
<td>Berg and Berg 1998</td>
</tr>
<tr>
<td></td>
<td>Oak Quercus robur</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Southern Sweden (60)</td>
<td>Bramble Rubus fruticosus</td>
<td>40</td>
<td>Berg and Berg 1998</td>
</tr>
<tr>
<td>Southernmost Sweden (745)</td>
<td>Bramble Rubus fruticosus</td>
<td>30</td>
<td>Berg 1996</td>
</tr>
<tr>
<td></td>
<td>Juniperus communis</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>The Netherlands (1170)</td>
<td>Bramble Rubus sp.</td>
<td>67–82</td>
<td>Fopp en et al. 2002</td>
</tr>
<tr>
<td>Lithuania (120)</td>
<td>Norway spruce Picea abies</td>
<td>71</td>
<td>present study</td>
</tr>
</tbody>
</table>

* *Picea excelsa* is a synonym of *Picea abies* (Navasaitis *et al.* 2003)
different regions (Table 1). Bramble, whose thorns provide good protection for nests, heads this list, and it was a major *M. avellanarius* nests supporting plant species in the Netherlands, southern Sweden and Great Britain (Table 1). In Lithuania, only a few nests of *M. avellanarius* were found in bramble (another species: *Rubus caesius* L.), because brambles are comparatively scarce in this country. Juniper was strongly preferred as a nest site when compared with its abundance in south-central Sweden (Berg and Berg 1998). In Lithuania, junipers grow only in pure Scots pine forests (Navasaitis et al. 2003), which are avoided by *M. avellanarius* (Juškaitis 2003b, 2007). In the Alps, the main nest supporting plant species were spruce and beech (Kahmann and Frisch 1950, Wachtendorf 1951), but beech is absent from the list of native trees in Lithuania (Navasaitis et al. 2003).

Besides bramble, spruce, beech and juniper (Table 1), many other plant species were used by *M. avellanarius* as nest sites. In Sweden, nests of *M. avellanarius* were also found in oak trees, honeysuckle *L. periclymenum*, wild rose *Rosa* sp., blackthorn *Prunus spinosa* L., aspen trees etc. (Berg 1996, Berg and Berg 1998). In Britain, such plants were honeysuckle *L. periclymenum*, hawthorn *Crategus* sp., hazel, gorse *Ulex europaeus* L., blackthorn, ivy *Hedera helix* L. (Hurrell and McIntosh 1984, Eden and Eden 2001, Bright et al. 2006). In the Alps, nests of *M. avellanarius* were also built in *Berberis* sp., oak trees, *Clematis vitalba* L., raspberries and wild roses (Kahmann and Frisch 1950, Wachtendorf 1951).

Conifers (Norway spruce and juniper) are favoured nest support for *M. avellanarius* in some parts of its distribution range (Table 1). Radio-tracking showed that even alien coniferous species, principally Corsican pine *Pinus nigra* Arnold, Douglas fir *Pseudotsuga menziesii* (Mirb.) and Lawson cypress *Chamaecyparis lawsoniana* (A. Murr.), were used by *M. avellanarius* extensively as nest sites in commercial coniferous plantations in Britain (D. Smith, pers. comm.).

In comparison to other regions, a significant prevalence of Norway spruce as a nest supporting plant for *M. avellanarius* was observed in Lithuania (Table 1). A similar situation was observed only in the Alps, where 50% of nests were found in spruce trees (Kahmann and Frisch 1950). Also in the West Erzgebirge (Germany), several nests of *M. avellanarius* were found in young spruce trees 1.5 m high (Möckel 1988). About 10% of *M. avellanarius* nests were situated in spruce trees in south-central Sweden (Berg and Berg 1998).

The height, in which summer nests of *M. avellanarius* were found, varied from underground (Lozan 1970) up to 33 m (Müller-Stiess 1996), depending on habitat type, and nest height differs between young and high canopy woodlands (Bright and Morris 1991, 1992, Müller-Stiess 1996). Many researchers (Kahmann and Frisch 1950, Wachtendorf 1951, Hurrell and McIntosh 1984, Vilhelmsen 1996, Foppen et al. 2002), who searched for nests of *M. avellanarius* in shrubs, overgrown clearings and coppices, stated that the average height of *M. avellanarius* nests above ground was about 1 m. The same average height was estimated in young woodlands in Lithuania. In general, the average height of nests above ground in young woodlands was related to the age and height of young trees and shrubs: it may be significantly lower in the earliest stages of woodland succession.

However, some summer nests of *M. avellanarius* were situated also on the surface of the ground (Kahmann and Frisch 1950, Hurrell and McIntosh 1984). According to Kahmann and Frisch (1950), dozens of such nests could be overlooked among thick grasses. Lozan (1970) found several nests of *M. avellanarius* with juveniles even underground, covered by the litter layer. Such nests sites may be overlooked by simple human searches.

M. avellanarius shows great plasticity in selection of both habitats and nest sites. Although *M. avellanarius* prefers closed nest sites, its ability to make nests in tangles of vegetation allows them to occupy a much wider spectrum of habitats compared to sympatric edible dormice *Glis glis* (L.), which require much more specific habitats, i.e. mature deciduous or mixed forests with old hollow trees (Juškaitis 2003b).

In young woodlands, selection of nest supporting plants by *M. avellanarius* depends on
availability of suitable plants capable of supporting and hiding their nests. The preferred
nesting sites for *M. avellanarius* are thorny plants (bramble, hawthorn, blackthorn, wild
rose), coniferous (Norway spruce, juniper), young twiggy trees (beech, oak) and climbers
(honeysuckle *L. periclymenum*, ivy). Among them, brambles are the most preferred nest-
ing site for *M. avellanarius* in many regions. However, conifers (Norway spruce, juniper)
are preferred by *M. avellanarius* in the northern part of its distribution range (e.g. Lithu-
ania, Sweden) where brambles are absent or scarce.

ACKNOWLEDGMENTS: The authors are grateful to Prof. Dr. Hab. A. Hillbricht-Ilkowska
and an anonymous reviewer for their valuable comments on earlier version of the manuscript,
Prof. Dr. P. Morris for revision of the English and
to D. Smith for providing unpublished data on
dormouse nest sites.

6. REFERENCES

Balčiauskas L., Trakimas G., Juškaitis R., Ulevičius A., Balčiauskienė L.
1999 – Lietuvos žinduolių, varliagyvių ir roplių atlasas [Atlas of Lithuanian Mammals,
Amphibian and Reptiles], 2nd edition – Aks-
tis, Vilnius, 120 pp. (in Lithuanian with Eng-
lish summary).

Berg L. 1996 – Small-scale changes in the dis-
tribution of the dormouse *Muscardinus avel-
lanarius* (Rodentia, Myoxidae) in relation to
vegetation changes – Mammalia, 60: 211–
216.

Berg L., Berg Å. 1998 – Nest site selection
by the dormouse *Muscardinus avellanarius*
35: 115–122.

Berthold P., Querner U. 1986 – Die Hasel-
maus (*Muscardinus avellanarius*) in Nustern
freibrütender Singvögel – Z. Säugetierkd.
51: 255–256 (in German).

Bright P.W., Morris P.A. 1991 – Ranging
and nesting behaviour of the dormouse, *Mus-
cardinus avellanarius, in diverse low-growing

Bright P.W., Morris P.A. 1992. – Rang-
ing and nesting behaviour of the dormouse,
Muscardinus avellanarius, in coppice-with-
standards woodland – J. Zool., Lond. 226:
589–600.

Bright P.W., Morris P.A. 1996 – Why are
dormice rare? A case study in conservation

Bright P., Morris P., Mitchell-Jones T.
2006 – The Dormouse Conservation Hand-
book. 2nd ed. – English Nature, Peterbor-
ough, 74 pp.

Eden S.M., Eden R.M.G. 2001 – The dor-
mouse in Dorset: a reappraisal of dormouse

Fischer J.A., Bosecker E. 1992 – Be-
merkenswerter Neststandort der Haselmaus
(*Muscardinus avellanarius*) – Säugetierkd. Inf.
3 (16): 467–469 (in German).

Foppen R., Verheggen L., Boonman M.
2002 – Biology, status and conservation of the
hazel dormouse (*Muscardinus avellanarius*)

Fuchs W. 1987. – Haselmäuse (*Muscardinus
avellanarius*) in freiberbrütender Singvö-
gel – Z. Säugetierkd. 52: 61 (in German).

Gatter W., Schütt R. 1999 – Langzeitent-
wicklung der Höhlenkonkurrenz zwischen
Vögel (Aves) und Säugetieren (Bilche Gliri-
dae; Mäuse Muridae) in den Wäldern Baden-
Württembergs – Orn. Anz. 38: 107–130 (in
German).

Görner M. 1990 – Haselmaus (*Muscardinus
avellanarius*) als Wiesenbewohner – Säu-
getierkd. Inf. 3 (14): 154 (in German).

Hurrell E., MacIntosh G. 1984 – Mammal Society dormouse survey, January 1975

Juškaitis R. 2003a – Abundance dynamics and
reproduction success in the common dor-
mouse, *Muscardinus avellanarius*, populations

Juškaitis R. 2003b – New data on distribution,
habits and abundance of dormice (Gliridae)
in Lithuania – Acta Zool. Hung. 49 (Suppl. 1):
55–62.

Juškaitis R. 2004 – Lazyvinės miegapelės
(*Muscardinus avellanarius*) Aukštadvario re-
gioniniame parke [Common dormouse (*Mus-
cardinus avellanarius*) in Aukštadvaris region-
al park] – Theriologia Lituanica, 4: 54–64 (in
Lithuanian with English summary).

Juškaitis R. 2005 – The influence of high nest-
box density on the common dormouse
Muscardinus avellanarius population – Acta The-
riol. 50: 43–50.

Juškaitis R. 2007 – Habitat selection in the
common dormouse *Muscardinus avellanarius*

Kahmann H., Frisch O. 1950 – Zur Ökolo-
gie der Haselmaus (*Muscardinus avellanarius*)
531–546 (in German).

Laar V. van. 1979 – Summer nests of the ha-
zell dormouse in north-eastern France – Acta
Nest sites of the common dormouse in young woodlands

Received after revising April 2007