Alfredo Attisano, Adiunkt
Contact
Behavioural Ecology Unit
Museum and Institute of Zoology
Main research interests
My research focuses on behavioural and evolutionary ecology of birds and insects. I am particularly interested in how intra- and inter-specific interactions shape the evolution of life-history traits.
Research Gate: https://www.researchgate.net/profile/Alfredo_Attisano
Research projects
Nestlings’ phenotypic polymorphism and co-evolutionary arms race in a host-brood parasite system in New Caledonia. NCN 2016/23/B/NZ8/03082. With Jörn Theuerkauf and Roman Gula
Mate choice and family formation in a cooperatively breeding bird. NCN 2018/29/B/NZ8/02312. With Jörn Theuerkauf, Roman Gula, Magdalena Zagalska-Neubauer and Ralph Kühn
Publications
Attisano, A., Thiel, F., Sato, N., Okahisa, Y., Bolopo, D., Tanaka, K.D., Kuehn, R., Gula, R., Ueda, K. and Theuerkauf, J., 2019. Breeding biology of the Fan-tailed Gerygone Gerygone flavolateralis in relation to parasitism by the Shining Bronze-cuckoo Chalcites lucidus. Journal of ornithology 160: 91-103
De Gasperin O., Duarte A., English S., Attisano A. and Kilner R.M. 2019. The early‐life environment and individual plasticity in life‐history traits. Ecology & Evolution 9: 339-351
Attisano A., Sato N.J., Tanaka K., Okahisa Y., Kuehn R., Gula R., Ueda K., Theuerkauf J. 2018. Visual discrimination of polymorphic nestlings in a cuckoo-host system. Scientific Reports 8: 10359
Bojarska K., Kuehn R., Gazda M.A., Sato N.J., Okahisa Y., Tanaka K., Attisano A., Gula R., Ueda K., Theuerkauf J. 2018. Mating system and extra-pair paternity in the Fan-tailed Gerygone Gerygone flavolateralis in relation to parasitism by the Shining Bronze-cuckoo Chalcites lucidus. PLoS ONE 13: e0194059
Kilner R.M., Boncoraglio G., Henshaw J.M., Jarrett B.J.M, De Gasperin O., Attisano A., Kokko H. 2015. Parental effects alter the adaptive value of an adult behavioural trait. eLife 4: e07340
Attisano, A., Kilner R.M. 2015. Parental effects and flight behaviour in the burying beetle, Nicrophorus vespilloides. Animal Behaviour 108: 91-100
Attisano, A., Murphy J.T., Vickers A., Moore P.J. 2015. A simple flight mill for the study of tethered flight in insects. Journal of Visualized Experiments 106: e53377
Attisano, A., T. Tregenza, A.J. Moore and P.J. Moore 2013. Oosorption and migratory strategy of the milkweed bug, Oncopeltus fasciatus. Animal Behaviour 86: 651-657
Attisano, A., A.J. Moore and P.J. Moore 2012. Reproduction-longevity trade-offs reflect diet, not adaptation. Journal of Evolutionary Biology 25: 873-880
Moore, P.J. and Attisano, A. 2011. Oosorption in response to poor food: complexity in the trade-off between reproduction and survival. Ecology & Evolution 1: 37-45
IMBIO
Tytuł projektu: Integracja i mobilizacja danych o różnorodności biotycznej Eukaryota w zasobach polskich instytucji naukowych (IMBIO)
Źródło finansowania: Program Operacyjny Polska Cyfrowa, poddziałanie 2.3.1 „Cyfrowe udostępnienie informacji sektora publicznego ze źródeł administracyjnych i zasobów nauki” (Typ II projektu: Cyfrowe udostępnienie zasobów nauki)
Ogłoszenie o decyzji CPPC: https://cppc.gov.pl/aktualnosci/1659-zakonczenie-oceny-merytorycznej-wnioskow-z-poddzialania-2-3-1-11-nabor-ii-runda
Nr projektu: POPC.02.03.01-IP.01-00-011/19
Budżet: 18 763 954 zł
Okres realizacji: 1. stycznia 2020 – 31. grudnia 2022
Wykaz Partnerów:
Akademia Pomorska w Słupsku
Instytut Botaniki im. W. Szafera Polskiej Akademii Nauk
Instytut Oceanologii Polskiej Akademii Nauk
Instytut Ochrony Przyrody Polskiej Akademii Nauk
Instytut Systematyki i Ewolucji Zwierząt Polskiej Akademii Nauk
Muzeum Górnośląskie w Bytomiu
Morski Instytut Rybacki – Państwowy Instytut Badawczy
Muzeum i Instytut Zoologii Polskiej Akademii Nauk
Uniwersytet Gdański
Uniwersytet Jagielloński
Uniwersytet Łódzki
Uniwersytet Opolski
Uniwersytet Marii Curie-Skłodowskiej
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Uniwersytet Śląski w Katowicach
Uniwersytet w Białymstoku
Uniwersytet Wrocławski
Uniwersytet Warszawski (Lider)
Opis Projektu:
Projekt powstał w ramach konsorcjum 18 instytucji naukowych, współpracujących w Krajowej Sieci Informacji o Bioróżnorodności (KSIB). Głównym celem jest otwarcie dostępu do danych o różnorodności biologicznej organizmów jądrowych (Eukaryota), znajdujących się w zasobach instytucji partnerskich. Będzie on realizowany poprzez digitalizację i udostępnienie danych nie istniejących dotąd w formie cyfrowej lub pozostających poza siecią.
Mobilizacja obejmie cenne zbiory okazów flory i fauny z kraju i innych rejonów świata, kartoteki, dane bibliograficzne i niepublikowane oraz bazy danych. Integracja danych na poziomie merytorycznym i strukturalnym zapewni ich techniczną spójność i jakość naukową oraz możliwość ich późniejszego wykorzystania w szerokim zakresie możliwych zastosowań. Powstanie system informatyczny, służący do zarządzania danymi i wizualizacji efektów działań, a także komunikacji z zewnętrznymi aplikacjami i repozytoriami, w tym Global Biodiversity Information Facility (GBIF). Integracja będzie dotyczyć organizacji i standaryzacji danych w zakresie taksonomii oraz informacji przestrzennej, niezbędnych dla zapewnienia wartości merytorycznej.
Projekt dostarczy narzędzi wspierających profesjonalistów i specjalistów-amatorów w zakresie gromadzenia danych i digitalizacji, a także redukując koszty digitalizacji poprzez pracę w grupie (również działania typu crowd-sourcing). Wśród zgromadzonych danych znajdą się także informacje o gatunkach szczególnego zainteresowania (inwazyjne, szkodliwe, zagrożone, chronione), istotne dla ochrony przyrody, środowiska, rolnictwa, leśnictwa i innych sfer życia publicznego (np. ochrona zdrowia, edukacja).
Marta Maziarz, Dr
Dr Marta Maziarz
Museum and Institute of Zoology
Polish Academy of Sciences
Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
Main research interest
I am interested in the ecology and behaviour of animals, their adaptations and interspecific interactions. My recent research focuses on songbirds and social insects in the primeval part of the Białowieża Forest (Poland), and I also study bird ecology in human-transformed woodlands and farmland in Great Britain. Currently, I lead a project on the relationships between nesting wood warblers Phylloscopus sibilatrix and ants that colonise bird nests to raise their broods, funded by the National Science Centre, Poland; project title: “Colonisation of bird nests by ants: mutualism, commensalism or coincidence?” (2017/26/D/NZ8/01063).
ORCID iD: https://orcid.org/0000-0002-2921-5713
Scholar Google: https://scholar.google.com/citations?user=YUYJ0w8AAAAJ&hl=pl
Research Gate: https://www.researchgate.net/profile/Marta_Maziarz
Selected publications
Maziarz M., Broughton R. K., Casacci L. P., Dubiec A., Maák I., Witek M. 2020. Thermal ecosystem engineering by songbirds promotes a symbiotic relationship with ants. Scientific Reports 10: 20330. https://doi.org/10.1038/s41598-020-77360-z
Broughton R. K., Bubnicki J. W., Maziarz M. 2020. Multi-scale settlement patterns of a migratory songbird in a European primaeval forest. Behavioral Ecology and Sociobiology 74:128. https://doi.org/10.1007/s00265-020-02906-0
Maziarz M., Grendelmeier A., Wesołowski T., Arlettaz R., Broughton R. K., Pasinelli G. 2019. Patterns of predator behaviour and Wood Warbler Phylloscopus sibilatrix nest survival in a primaeval forest. Ibis 161: 854-866. https://doi.org/10.1111/ibi.12679
Maziarz M. 2019. Breeding birds actively modify the initial microclimate of occupied tree cavities. International Journal of Biometeorology 63: 247-257. https://doi.org/10.1007/s00484-018-01658-x
Maziarz M., Piggott C., Burgess M. 2018. Predator recognition and differential behavioural responses of adult wood warblers Phylloscopus sibilatrix. Acta Ethologica 21: 13-20. https://doi.org/10.1007/s10211-017-0275-2
Maziarz M., Broughton R. K., Hebda G., Wesołowski T. 2018. Occupation of wood warbler Phylloscopus sibilatrix nests by Myrmica and Lasius ants. Insectes Sociaux 65: 351-355. https://doi.org/10.1007/s00040-018-0613-z
Maziarz M., Broughton R. K., Wesołowski T. 2017. Microclimate in tree cavities and nest-boxes: implications for hole-nesting birds. Forest Ecology and Management 389: 306-313. https://doi.org/10.1016/j.foreco.2017.01.001
Maziarz M., Wesołowski T., Hebda G., Cholewa M., Broughton R. K. 2016. Breeding success of the Great Tit Parus major in relation to attributes of natural nest cavities in a primeval forest. Journal of Ornithology 157: 343-354. https://doi.org/10.1007/s10336-015-1294-2
Maziarz M., Wesołowski T., Hebda G., Cholewa M. 2015. Natural nest-sites of Great Tits (Parus major) in a primeval temperate forest (Białowieża National Park, Poland). Journal of Ornithology 156: 613-623. https://doi.org/10.1007/s10336-015-1169-6
Wesołowski T., Rowiński P., Maziarz M. 2015. Interannual variation in tree seed production in a primeval temperate forest: does masting prevail? European Journal of Forest Research 134: 99-112. https://doi.org/10.1007/s10342-014-0836-0
Maziarz M., Wesołowski T. 2013. Microclimate of tree cavities used by Great Tits (Parus major) in a primeval forest. Avian Biology Research 6: 47-56. https://doi.org/10.3184/175815513X13611994806259
Wesołowski T., Maziarz M. 2012. Dark tree cavities – a challenge for hole nesting birds? Journal of Avian Biology 43: 454-460. https://doi.org/10.1111/j.1600-048X.2012.05704.x
Maziarz M., Wesołowski T. 2010. Timing of breeding and nestling diet of Wood Warbler Phylloscopus sibilatrix in relation to changing food supply. Bird Study 57: 540-552. https://doi.org/10.1080/00063657.2010.512954
Wesołowski T., Maziarz M. 2009. Changes in breeding phenology and performance of Wood Warblers Phylloscopus sibilatrix in a primeval forest: a thirty-year perspective. Acta Ornithologica 44: 69-80. https://doi.org/10.3161/000164509X464902
VIBRANT - Evolution of VIBRoacoustic communication in ANTs
DESCRIPTION OF THE PROJECT
Efficient communication to coordinate the actions of up to a million specialized nestmates is fundamental to the success of social insects, especially ants which represent some of the most sophisticated societies known to biology. Various modalities of signaling have been identified in ants, including the predominant release of chemical substances, visual behavioral displays involving movement or posture, tactile interactions, and the emission of sounds and vibrations whose role has been underestimated for long time.
Figure 1 Scanning Electron Microscopy
picture of the pars stridens of ant.
In the last image the ridges are evident.
Vibratory messages can be generated by wagging the whole body while standing on the substrate, by scraping the substrate with the mandibles or by tapping the nest substrate with both the head and apex of the abdomen. Besides the employment of these unspecialized morphological features a specialized stridulatory organ made of a ‘plectrum’ rasping across a ‘file’ (‘pars stridens’), has evolved in at least five ant subfamilies.
Until now, it was thought that acoustic cues were a very minor part of ant communication, representing simple signal conveying alarm or used as a beacon by other ants for orientation but it has recently become clear that sounds and vibrations are also used to transmit more abstract information, including a species’ identity or an individual’s caste and status. The importance of these signals has become striking after that recent studies have demonstrated the ability of several social parasites to imitate ants’ language to live for long periods, as undetected intruders, in close contact with their host ants.
The project aims at characterizing the acoustic signals and production modalities of various ant species disentangling the factors that shaped the evolution of acoustic communication in ant societies.
Figure 2 A worker of Myrmica scabrinodis
(Photo by Daniel Sánchez-García)
Firstly, we will verify if sounds and vibrations vary at multiple scales, i.e. among colonies within populations, among populations within species, and at higher taxonomic levels (between species, genera and subfamilies). The entity of variation of the first two levels will be evaluated along a latitudinal gradient using Myrmica scabrinodis, a common red ant as a model. Secondly, the acoustic patterns of twenty-five common European ant species will be investigated and compared with signal producing structures.
We will then compare the level of within- and between-populations signal variation of Myrmica scabrinodis with population genetic data, testing the hypothesis that more marked differences of vibroacoustic signals between populations exist due to geographical and genetic distance. In addition, we will test the hypothesis that acoustic patterns have evolved across species, genera and subfamilies following phylogenetic trajectories even though some signal characteristic may be explained by other factors (e.g. nesting and habitat preferences).
Finally, we will study the coevolution of acoustic communication in host-parasite interactions focusing on the slave-making ant Myrmoxenus ravouxi whose workers have to continually raid other ant (Temnothorax spp) nests for worker brood to refresh the labour force of its colonies. The vibroacoustic patterns of the host and the parasite will be compared, and playback experiments will be performed to test whether parasite imitates the host acoustics signals or if the host’s slave workers may “learn” the signals of the parasite during their development as slavers into the parasite colony.
The project aims at demonstrating that the acoustic communication in ants is much more developed and complex than previously supposed. We will seek to demonstrate that the acoustic signals in ants possess an increasing variability at multiple scales, starting from an intra-language variation – dialects – in different populations of the same species, to variability of “language families” unifying different species, until the existence of different “languages” at the genus or subfamily level.
This project, whose Principal Investigator is dr. hab. Luca Pietro Casacci, was carried out under POLONEZ programme which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778
THE PROJECT RESULTS
Figure 3 The parasitic larva of Maculinea teleius with a
worker and larvae of its host ant species Myrmica scabrinodis.
Many lycaenid butterflies have evolved adaptation to exploit
ant societies. (Photo by Daniel Sánchez-García)
Until now, it was thought that acoustic cues were a very minor part of ant communication, representing simple signal conveying alarm or used as a beacon by other ants for orientation but it has recently become clear that sounds and vibrations could also contain other information. The importance of these signals has become striking after that recent studies have demonstrated the ability of several social parasites to imitate ants’ language to live for long periods, as undetected intruders, in close contact with their host ants.
During the project we characterised the variation in the acoustic signals and production modalities of various ant species disentangling the factors that have shaped the evolution of acoustic communication in ant societies. Ants were recorded by using a device that amplify their sounds and the stridulatory organs were visualised using a Scanning Electron Microscope which allow to obtain pictures of very tiny structures.
Figure 4 Crematogaster auberti, one of the Myrmicinae
species included in the project (Photo by Daniel Sánchez-García)
Firstly, we verified if sounds and vibrations vary at multiple scales, i.e. among colonies within populations, among populations within species, and at higher taxonomic levels (between species, genera). We evaluated the entity of variation at colony and population levels along a latitudinal gradient using Myrmica scabrinodis, a common red ant, as a model. We found that sounds are slightly different between colonies belonging to the same population but mostly differ among ant populations for certain sound characteristics. Secondly, to evaluate the acoustic differences between ant species and genera, we recorded and compared the sounds of 40 common European ant species. We found an enormous variability of sounds that were not explained by the weaker variability in the stridulatory organs, suggesting that the ants can “play” very diverse signals using an “instrument” which is very constant in its structure across species.
Figure 5 A forager of Myrmica scabrinodis
(Photo by Daniel Sánchez-García)
Then, we compared the level of within- and between-populations signal variation of Myrmica scabrinodis with population genetic data, showing that the genetic relationship did not reflect the sound pattern among colonies and populations. Similarly, the ants’ acoustic patterns do not seem to have evolved across species and genera following phylogenetic trajectories. Interestingly, our data suggested that some acoustical signal characteristics could be explained by substrate that ant species use to build their nests (e.g. soil, wood) or temperature and humidity of the environment they colonise.
Finally, we investigated how vibroacoustic signals have evolved in socially parasitic ants using two model systems, the inquiline ant Myrmica karavajevi and its host ant Myrmica scabrinodis and the slave-making Myrmoxenus ravouxi and its host ants belonging to the genus Temnothorax. We discovered that the parasite sound has evolved towards an imitation of the host signals either produced by host queen (in both parasites) or workers (M. ravouxi workers). This imitation strategy, which allow the parasite to integrate into the host colony, was confirmed in playback trials where the host workers reacted in a similar way when we reproduced the sound of the parasite and host queens.
Figure 6 A queen of Myrmoxenus ravouxi interacts
with a slave host worker (Photo by Daniel Sánchez-García)
The results of the project have showed that there is an enormous variability of the signals starting from the individual level, colony, population and species. Having discovered this variability goes beyond the concept that sounds are little used in ants, a wall created in the last 30 years that has slowed down research in this field. Thus, the project “VIBRANT” has brought to light the idea that there are still many aspects to be discovered in this communication channel.
DISSEMINATION AND PUBLICATIONS
During the two years of the project, the preliminary results of the project were presented at 7 international conferences on social insects, bioacoustics and zoology.
- Butterfly Conservation 8th International Symposium, Southampton (UK), 6–8.04.2018. Casacci L.P., et al. 2018. Evolution of acoustic signals in lycaenid-ant interactions (poster presentation).
- XVIIIth Congress of the International Union for the Study of Social Insects, Guarujá (BR), 5–10.08.2018. Casacci L. P., et al. 2018. How to deceive your host: chemical and vibroacoustical strategies of an inquiline ant (oral presentation).
- 2nd International Symposium on Biotremology, Riva del Garda (IT), 4–6.09.2018. Casacci L.P., et al. 2018. Evolution of vibroacoustic signals in Myrmicinae ants (oral presentation).
- 79th Congress of the Italian Zoological Union, Lecce (IT), 25–28.09.2018. Casacci L.P., et al. 2018. Chemical and vibroacoustical strategies of an inquiline ant to integrate into its host colonies (oral presentation).
- Central European Meeting of the IUSSI, Wien (A), 19–22.03.2019. Casacci L.P., et al. 2019 Factors influencing the evolution of vibroacoustic signals in Myrmicinae ants (oral presentation).
- 8th CEWM Central European Workshop of Myrmecology, Regensburg (D), 27-29.09.2019. Casacci L.P., et al. 2019 An inquiline ant uses both chemical and vibro-acoustical mechanisms to integrate into its host colonies (oral presentation).
- 17th Conference of the Italian Association for the Study of Social and Pre-Social Arthropods, Florence (IT), 4–5.07.2019. Casacci L.P. The evolution of vibro-acoustic signals in ant societies (plenary talk).
Publications
Casacci, L. P., Bonelli, S., Balletto, E., & Barbero, F. (2019). Multimodal signaling in myrmecophilous butterflies. Frontiers in Ecology and Evolution, 7, 454. https://www.frontiersin.org/articles/10.3389/fevo.2019.00454/full
CONTACT
Dr.hab. Luca Pietro Casacci
E-mail: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
Department of Life Sciences and Systems Biology,
Via Accademia Albertina 13,
10123 Turin,
Italy
Dr. Hab. Magdalena Witek
Email: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
Wojciech Czechowski
Email: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
Museum and Institute of Zoology, PAS
Wilcza 64, 00-679 Warsaw
Poland